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ABSTRACT

The Bag-of-Features (BOF) model is widely used for im-

age classification. Most BOF models incorporate a step of

maximum pooling to generate the raw image representation,

where salient atoms with maximum response are reserved for

final representation. However, recent locality-preserving cod-

ing schemes do not account for the saliency characteristic dur-

ing the process of generating the raw image representations.

In this paper, we propose a saliency aware locality-preserving

coding scheme by explicitly considering saliency into the dic-

tionary creation and feature coding stages. The novel coding

scheme guarantees strong response in the pooling operation

and thus contributes to a discriminative image representation.

Experiments on three benchmark datasets validate the effec-

tiveness of the proposed method.

Index Terms— Locality-preserving, Saliency, Image

Representation and Classification

1. INTRODUCTION

Image classification, including object and scene classifica-

tion, is a fundamental problem in computer vision. The Bag-

of-Features (BoF) approach [1] represents an image as a com-

pact histogram of visual word occurrences over a pre-learned

dictionary which defines a collection of ”visual words”. Com-

bined with powerful classifiers such as SVM, the BoF method

and its extensions have achieved state-of-the-art performance

on several famous image categorization datasets like Cal-

tech101 [2], UIUC-Sport dataset [3] and 15-Scenes [4].

Typically, BoF method for image classification involves

four stages: feature extraction, dictionary creation, feature

coding and feature pooling. In the feature extraction step,

image descriptors such as SIFT [5] or HOG [6] are extract-

ed by interest detectors or dense sampling. The Dictionary

which could be predefined or learned over all descriptors is

designed for further encoding. Feature coding is designed

to encode the response of feature descriptors over the dictio-

nary into raw representations. Much recent work has devot-

ed to utilizing the locality constraint to generate the raw im-

age representation and shown impressive performance [7, 8].

Laplacian sparse coding [8] uses a similarity matrix to de-

scribe the locality for input features. Wang et al.[7] proposed

the locality-constrained linear coding (LLC) to project each

descriptor into the local coordinates formed by its k nearest

neighbors. Locality-preserving image representation methods

hold several attractive properties such as the stableness of the

coding algorithm, local smooth sparsity, etc. Feature pooling

summarizes the distribution of the codes by some well-chosen

aggregation statistic. Pooling features over a local neighbor-

hood will obtain invariance to small transformations and con-

stitute the image final representation. The pooling operation

is typically a sum, an average, a max rule. Extensive work in-

dicates that max-pooling that chooses the largest coefficien-

t for a visual word can lead to better classification perfor-

mance [9, 7, 10]. According to the popular maximum feature

pooling operation, only the maximum response on each dic-

tionary atom is preserved while the lower ones are discarded.

This is called saliency characteristic [11] between features

and atoms, which has been employed for descriptive and dis-

criminative image representation. The saliency for dictionary

means that if a dictionary atom is much closer to a descrip-

tor than other atoms, it will obtain a very strong response and

contributes to the descriptive power of final representation.

However, the existing locality-preserving coding schemes

do not account for the saliency characteristic of the pooling

stage. In this paper, we consider saliency into the dictionary

creation and feature coding stages and propose a saliency-

aware locality-preserving coding scheme. Firstly in the dic-

tionary creation stage, we take into account the local geo-

metric and learn a locality-preserving dictionary for salien-

cy pooling. Specifically, to learn a locality-preserving dic-

tionary, it determines the location of the dictionary atom in

the input feature space by analyzing the approximated tangent

plane of the atom and its neighbors distribution. In the feature

coding stage, we adaptively select the coding bases according

to the local density distribution, instead of fixedly selecting

the number of bases [7]. Fixedly selecting coding bases may

lead to weak responses in low-density areas while poor recon-

struction results in high-density areas. By adaptively select-

ing the coding bases depending on the local density distribu-

tion, it can obtain appropriate size of coding bases for input

features and guarantee deriving large response. Therefore,
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this adaptively coding scheme can make the representation

descriptive and thus boost the classification performance.

Therefore, the contributions of this paper can be summa-

rized as three-fold:

1. We propose a novel locality-preserving coding scheme

by explicitly considering saliency pooling operation.

It is simple to implement with high computational ef-

ficiency. Experimental results on three benchmark

datasets validate the effectiveness of the method.

2. Local geometrical structure is exploited in the dictio-

nary creation stage. We introduce a locality-preserving

dictionary creation algorithm to guarantee salient re-

sponse in the pooling stage.

3. For feature coding, local density distribution is con-

sidered for adaptively selecting the coding bases.

The sparse coefficients are obtained by using the

Epanechnikov quadratic kernel in an assignment fash-

ion with respect to the saliency characteristic.

2. SALIENCY AWARE LOCALITY-PRESERVING
CODING

In this section, we present our saliency aware locality-

preserving coding method including locality-preserving dic-

tionary learning algorithm and adaptively locality-constrained

coding scheme for image representation and classification.

Let X be a set of n-dimensional local descrip-

tors extracted from images, i.e.X = [x1,x2, . . . ,xN ] =
[X1, X2, . . . , Xc]∈ R

n×N , where Xi is sub-set of the train-

ing samples from class i and c is the total number of class-

es. Learning a structured dictionary D = [d1,d2, . . . ,dK ] ∈
R

n×K with K entries, where each di represents a basis vector

(i.e. visual word) in the dictionary. Let S = [s1, s2, . . . , sN ]∈
R

K×N be the sparse coefficient matrix, where each column is

a sparse representation for the corresponding local feature in

X .

2.1. Locality-preserving Dictionary Learning

Since in the locality-constrained coding stage, each local de-

scriptor leads to a representation using K nearest basis vec-

tors selected from the dictionary. After encoding all descrip-

tors, each dictionary atom obtains multiple responses. Due

to the maximum pooling operation, the maximum response is

preserved while the other low responses are discarded. Intu-

itively, if a basis vector is much closer to a local feature than

other vectors, it should have a relatively stronger response.

This saliency characteristic [11] can enhance the descriptive

power for image representation. For dictionary, if a dictionary

atom is surrounded by a local dense group of local descrip-

tors, it could obtain very strong response and thus benefits the

maximum pooling operation. Therefore, the dictionary atoms

Fig. 1. Dictionary learning by exploring the local geometrical

structure around dictionary code di. Derivation of normal

vectors vn
i of the tangent plane for di. Short dash arrows

are the normalized vectors from di to its k-nearest neighbors

formed by the feature descriptors.

should be distributed in the local dense regions in the input

feature space regarding the saliency characteristic. This con-

straint makes the dictionary locality-preserving.

Given a set of local features X = [x1,x2, . . . ,xN ] and

denote K as the size of the dictionary D, we aim to learn a

locality-preserving dictionary by exploring the local geomet-

rical structure and statistical information between local fea-

tures and dictionary atoms.

We initialize the dictionary via k-means. We update each

atom di of D individually. Each atom di should be surround-

ed with a set of local features. If a point of the dictionary

lies on the surface of the local set of feature descriptors, then

most of the feature points come from the dense side. There-

fore, we can update the dictionary based on the determination

of the distribution of nearest neighbor feature points for each

dictionary atom. This process is illustrated in Figure 1.

For a dictionary atom di, find its k-nearest neighbors

(xij , j = 1, . . . , k) from the local features. A vector vij from

di to each of its kNNs can be represented as:

vij = xij − di, ∀j = 1, . . . , k (1)

Normalize each vij as a unit vector v′ij and the normal vector

of the tangent plane at di is approximated as

vn
i =

k∑
j=1

v′ij (2)

The relative location between di and its nearest neighbors can

be determined by computing the angle between the normal

vector of the tangent plane at di and vij . If the angle θij
between vn

i and vij is within 0 and π/2, then the xij is on

the positive side of the tangent plane. Formally, we check the

sign of the dot product :

θnij = vT
ij · vn

i (3)

If θnij > 0, then xij is on the positive side of the tangent plane

at di. If di lies on the surface of its local patch formed by its
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nearest feature points, then all or most of its nearest neighbors

are on one side of the tangent plane. Therefore, the relative

location of di can be determined by counting the number of

neighbors with θij ≥ 0, written as

pi =
1

k

k∑
j=1

(θij ≥ 0) (4)

We set a threshold γ applied to pi and determine whether the

di lies on the surface of the local patch. More specifically, if

pi ≥ 1 − γ, di is updated along the direction of the normal

vector of the tangent plane.

dt+1
i = dt

i + τvn
i (5)

where t is the iteration number and τ is the step size of the

updating. If pi < 1−γ, di lies in the relatively dense region of

its local patch and is not updated. Through this procedure, we

can learn a locality-preserving dictionary for feature coding

in the next section. The algorithm of dictionary learning is

summarized in Algorithm 1.

Algorithm 1 DICTIONARY LEARNING

Input: A data set of N data points i.e. local feature descrip-

tors X = [x1,x2, . . . ,xN ], the parameter τ, γ.

Output: the learned dictionary D

1: Initialization: Initialize D via k-means.

2: Update the matrix D.

Compute di, i = 1, 2, . . . ,K individually by solving

Eq.(1-5)

3: Check the optimality conditions step:
Return ro step 2 until convergence or maximum iteration

number achieves.

2.2. Adaptive Coding Bases Selecting

Given a learned dictionary D and an input local feature de-

scriptor x, our goal is to select the k nearest neighbor basis

vectors as the coding bases for x such that x has a sparse

representation regarding the locality. Previous work LLC [7]

projects each descriptor on the space formed by its k nearest

neighbors (k is fixed and small, e.g. k = 5). The density

distribution for feature descriptors and visual codes is differ-

ent locally. If a descriptor is located in a sparse neighborhood,

fixedly selecting coding bases may lead to weak responses for

atoms. For a descriptor in a dense neighborhood, fixedly se-

lecting insufficient coding bases may lead to inappropriate re-

sponses for atoms and not match the locality. Therefore, when

a feature descriptor is in a dense neighborhood, the number of

its nearest coding bases k should be large. When a feature de-

scriptor is surrounded by a sparse group of neighborhoods,

the k should be small. This assumption based on the saliency

constraint means that it can make the dictionary atoms close

Fig. 2. Comparison between vector quantization(VQ), sparse

coding(SC), standard locality-constrained linear coding (LL-

C, k is fixed), Adaptive-LLC(k is adaptive). The selected re-

construction bases for representation is highlighted in black.

to the descriptors and obtain strong responses in dense or s-

parse neighbors. Therefore, we should choose the k nearest

coding bases for a feature descriptor locally and adaptively

with respect to the saliency characteristic. Four kinds of cod-

ing bases selecting schemes are illustrated in Figure 2.

Selecting adaptive coding bases for a feature descriptor x
can be achieved by utilizing different criteria. Here the bases

are chosen based on the density distribution of the dictionary

atoms. The density field created by a single data point can be

described by a kernel of the form K(·). Placing a kernel on

each point, the estimated density at x is given by

p(x) =
1

N

N∑
i=1

K(x− di), di ∈ NN(x) (6)

where NN(x) denotes a set of nearest neighbors of x and

its cardinal size is N . We choose this coarsely. When the

condition:k → ∞ and k/N → 0 as N → ∞ is satisfied, the

probability of error of k-NN asymptotically approaches the

Bayes error [12]. Based on this condition, we set N = 5 lnK,

where K is the dictionary size. Here we use a Gaussian kernel

and Eq.(6) can be rewritten as:

p(x) =
1

N

N∑
i=1

1

(2πh2)
1
2

exp

(
−‖ x− di ‖2

2h2

)
,

di ∈ NN(x)

(7)

This density estimator contains only a single parameter, the

kernel width h, which can be estimated effectively from the

training data via cross-validation or,applying a self-tune tech-

nique to adaptively assign h. In this work, we define h as the

average of k distance values from its k nearest neighbors.
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After obtaining the estimated density probability at x, we

can select k nearest neighbors of x forming its local coor-

dinate system according to the formula below based on the

logistic function. k =
⌊

E
1+e−βp(x) + F

⌋
, where β,E, F are

scalar parameters. Apart from the constraints on k above, we

set k vary in a fixed and small range. That is, k should satisfy

the constraint: Kmin ≤ k ≤ Kmax, where Kmin and Kmax

are the minimum and maximum number of nearest neighbors

of x respectively. E,F can be computed using Kmin and

Kmax.

2.3. Sparse Representation Learning

After obtaining the adaptive coding bases for the input local

feature x, we employ the assignment based coding utilizing

the saliency characteristic to obtain the sparse coefficients.

For the assignment based method, we aim to seek a vector

to si that measures the potential relationships between input

local feature xi and k selected basis vectors. Denote sji, j =
1, . . . , k as the response coefficient representing the weight

between xi and dj , j = 1, . . . , k in Di, we can adopt different

weighted methods to assign weights smoothly such as kernel

regression with respect to the saliency characteristic.

sij =
K(·)∑k
j=1 K(·)

(8)

where K(·) denotes the kernel and can be any appropriate

form. In this paper, we choose the Epanechnikov quadratic

kernel.

K(·) =
{

3
4 (1− t2) if |t| ≤ 1

0 otherwise.
(9)

where t = ‖x−di‖
λ , λ determines the size of the local region.

λ(x) = |x− dn|,dn is the k nearest neighbor of x.

2.4. Computational Analysis

Our coding method has a computational complexity of

O(K + k), where K is dictionary size and k is number

of nearest neighbors. Other coding methods, ScSPM [9],

LScSPM [8], LLC [7] have computational complexity of

O(K2), O(K2), O(K + k2) respectively. Our assignment

based coding scheme is very simple to implement and thus

excellently holds the computational advantage over other op-

timization based coding methods.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and Experiment Setup

We evaluate the performance of the proposed locality-

preserving feature learning method for image classification

on three datasets: 15 scene dataset [4], the UIUC-Sport

dataset [3], Caltech101 [2]. We compared our results with

several existing state-of-the-art methods. Following common

setting, we use 128 dimensional SIFT [5] features which are

densely extracted from images on a grid with step size of 6

pixels and patch size of 16 pixels. All the images are pre-

processed into gray scale and resized to keep the maximum

size of height and width no more than 300 pixels. The SIFT

descriptors are normalized with unit �2-norm. The dictionary

is generated by our Alg1 and its size is fixed as 2048. The

coding method is used to obtain the sparse coefficients. In the

coding process, we use the sum normalization to normalize

the obtained coefficients. To incorporate spatial information,

the linear SPM [4] with three levels of 1 × 1, 2 × 2, 4 × 4
is adopted. Max-pooling and �2 normalization are adopted to

generate the final image representation. Lib-linear SVM[13]

is used for classification wherein the penalty coefficient is set

to 10.

In our dictionary learning algorithm, the three parame-

ters are (1): the step size for updating τ is set to 0.001 for

UIUC-Sport, 15-Scene dataset , and Caltech 101 according

to the good performance based on the observation. (2): the

threshold γ is set to 0.9 empirically. (3):the nearest neighbor

size of dictionary atom k = 5 log10 N based on the condi-

tion that the probability of error of k-NN asymptotically ap-

proaches the Bayes error if it satisfies the condition: k → ∞
and k/N → 0 as N → ∞ [12]. In the coding stage, assign-

ment based coding method is adopted to generate the sparse

representation. The Epanechnikov quadratic kernel is used.

The parameters Kmin,Kmax for k in coding stage are set as

3 and 15 respectively referred to LLC [7] and β is set to 1.

3.2. Experimental Results and Analysis

UIUC-Sport. We first conduct the comparison on the UIUC-

Sport [3] data set which contains 8 classes and 1792 images.

These 8 categories are rowing, badminton, polo, bocce, snow
boarding, croquet, sailing, and rock climbing and the image

number of each category ranges from 137 to 250. We random-

ly select 70 images from each class for training and 60 test

images from per class. We repeat this process for 10 rounds.

We compared our result with three existing algorithms: lin-

ear SPM using sparse codes [9], Histogram Intersection Ker-

nel [14], Laplacian sparse coding [8]. Classification accuracy

is compared in Table 1. As shown, our proposed method im-

proved performance compared with the state-of-the-art meth-

ods, which demonstrates the effectiveness of our method.

Scene-15. The 15-Scenes [4] dataset contains 4485 im-

ages distributing in 15 categories, with number of images

each category ranging from 200 to 400. The images cate-

gories vary from indoor scenes like living room and kitchen

to outdoor places like street and industrial. To compare with

others’ work, we randomly choose 100 images per class for

training and the remaining is reserved for test. This process is

repeated for 10 rounds. The results compared with four meth-

ods including nonlinear kernel SPM [4], linear SPM using s-
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Table 1. Comparison of classification rate(%) on UIUC-

Sport.

Algorithm Classification Accuracy

ScSPM [9] 82.74±1.46

HIK+OCSVM [14] 83.54±1.13

LScSPM [8] 85.31±0.51

Ours 86±1.59

parse codes [9], Kernel codebooks [15], Laplacian sparse cod-

ing [8] are shown in Table 2. In this experiment, our method

can achieve comparable performance while maintaining clear

computational advantage compared with the optimization in-

volved coding method. Note that LScSPM [8] outperforms

our method. The possible reason is that scene images con-

tain more heavy textures in single patch, LScSPM employs

smooth constraints into coding process and similar patches

will be encoded into similar sparse codes, which benefits the

classification performance. To serve for saliency, we focus

on the relations between dictionary atoms and local features

but not explicitly consider the relations between local features

and our method has computational advantage.

Table 2. Comparison of classification rate(%) on 15-scenes.

Algorithm Classification Accuracy

KSPM [4] 81.40±0.50

ScSPM [9] 80.28±0.93

KC [15] 76.67±0.39

LScSPM [8] 89.75±0.50

Ours 82.55±0.01

Caltech-101. The Caltech-101 dataset [2] contains 9144

images in 101 classes with high variance in shape. The num-

ber of images per category varies from 31 to 800. Follow-

ing the common experiment setup for Caltech-101, we use 30

images per class for training and leave the remaining for test.

We repeat this process for 5 rounds. The results are compared

with three existing algorithms including nonlinear kernel SP-

M [4], linear SPM using sparse codes [9] and LLC [7] in Table

3. As can be seen, our method can achieve comparable results

while holds the computational efficiency compared with other

optimization based coding methods.

3.3. Discussion

To comprehensively understand the effectiveness of the pro-

posed method, we further analyze its performance with re-

spect to dictionary learning, the adaptiveness for selecting

bases. Here we report the results using UIUC-Sport, but the

similar performance can be also applied to other datasets.

Table 3. Comparison of classification rate(%) on Caltech-

101.

Algorithm Classification Accuracy

KSPM [4] 64.40±0.80

ScSPM [9] 73.2±0.54

LLC [7] 73.44±-

Ours 73.96± 0.0038

First, we compare the classification accuracy using dictio-

nary generated by K-means clustering algorithm and by our

proposed locality-preserving dictionary leaning Alg1. Two

dictionary generation strategies are: k-means clustering (KM)

and our learning method utilizing locality constraint (DL). T-

wo coding schemes are: fixedly coding method ( LLC) and

adaptively coding method (ALC). Four kinds of experimen-

tal setup (KM+LLC,DL+LLC,KM+ALC,DL+LLC) are com-

pared. The results are plotted in Figure 4. As shown, the

learned dictionary and the adaptively coding method improve

the classification accuracy by 0.4∼1 percent over the method

using K-means and fixedly coding scheme. This validates the

effectiveness of the dictionary leaning algorithm and adap-

tively coding scheme under locality constraint.

Fig. 3. Performance comparison of the methods with different

codebook generation and coding schemes on UIUC-Sport Da-

ta Set(%). Assignment based coding with the Epanechnikov
quadratic kernel is used in all coding process to obtain the co-

efficients.

Second, we evaluate the effectiveness of adaptively select-

ing the size of coding bases for feature vectors by comparing

with fixedly selecting the bases size for features coding. Fig-

ure 5 presents the performance using 2,5,10,40 neighbors and

adaptively selecting neighbors respectively. As can be seen,

a relatively small and proper number of neighbors leads to

good classification accuracy. Adaptively selecting the neigh-

bors can achieve better classification performance compared

with the fixed, which indicates adaptive feature coding re-

garding the local structure can make the representation more
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descriptive.

Fig. 4. Performance comparison under fixedly selecting dif-

ferent neighbors and adaptively selecting neighbors on UIUC-

Sport Data Set.

4. CONCLUSIONS

In this paper, we propose a saliency aware locality-preserving

coding method for image classification by exploring the lo-

cal geometrical structure and statistical information between

local features and dictionary atoms. Experimental result-

s demonstrate that our method achieves or outperforms the

state-of-the-art performance on several benchmark dataset-

s. Meanwhile our dictionary learning procedure is simple to

implement and the coding process involves no optimization,

hence our method can maintain high computational efficien-

cy, which validate the effectiveness of our method especially

in the context of large-scale image classification task.
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